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We study theoretically the propagation of liquid surface waves over a bottom with one-dimensional �1D�
periodic undulations. We find a general criterion for omnidirectional total reflection in such a system. Numeri-
cal simulations based on a transfer matrix method demonstrate unambiguously the existence of omnidirectional
total reflection for liquid surface waves propagating over a bottom with 1D periodic undulations.
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The interactions of surface water waves with uneven bot-
toms are a fundamental hydrodynamics problem �1,2�, which
has important scientific values and potential applications
such as coastal engineering. The scattering of water waves
by a finite number of one-dimensional �1D� periodically
modulated ripples or bars on an horizontal, flat bottom has
received considerable attention for many years �1–6�. Many
interesting phenomena were found such as Bragg resonance,
a terminology from solid state physics �7�. As we know from
solid state physics, Bragg resonance leads to complicated
band structures for classical waves propagating in periodic
structures. Between bands there may exist a band gap for
waves with frequency within which propagation is absolutely
forbidden. The idea of band structures and band gaps has
been extended to photonic crystals for electromagnetic
waves �8,9�, sonic crystals for elastic waves �10�, and even to
the propagation of liquid surface waves in periodic structures
�11–18�. From band structures we can get deeper insight into
the propagation of liquid surface waves in periodic struc-
tures.

It was known that there does not exist a complete band
gap �along all directions� in infinite 1D photonic crystals,
e.g., two dielectric layers stacking alternatively. However, it
was shown recently that a finite 1D photonic crystal can
totally reflect incident light over a certain frequency range at
all angles, i.e., omnidirectional total reflection �19–22�. The
central idea resides in that if there are no propagating modes
that can couple an incident wave of any angle, omnidirec-
tional total reflection can occur. Omnidirectional total reflec-
tion in 1D photonic crystals is of great scientific and practi-
cal significance �23�.

In the present work, we show theoretically the analog of
omnidirectional total reflection in liquid surface waves
propagating over a bottom with a 1D periodic undulation.
The schematic view of the bottom structure studied is shown

in Fig. 1. The undulated structure can be obtained as follows.
A flat board of infinite length along the y direction is put on
the bottom. An array of solid bars with rectangular cross
section is then placed on the board periodically along the x
direction. The liquid depth over the bottom, the board, and
bars is denoted by h0, h1, and h2, respectively. The spacing
between adjacent bars is d1 and the horizontal dimension of
bars is d2. The calm liquid surface is set at . Thus, the peri-
odically arranged bars serve as a 1D periodically undulated
structure.

For incompressible inviscid liquids, the governing equa-
tions within the linear wave theory are given by �2�
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��

�z
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��

�z
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where � is the velocity potential, � is the angular frequency,
k is the wave vector, and g is the gravitational acceleration.
At the boundary between two different regions, we have the
following matching conditions:
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FIG. 1. �Color online� Schematic �a� side and �b� top views of a
bottom with a 1D periodic undulation.
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In the system under study both the traveling wave modes and
the evanescent wave modes are present. The complete solu-
tions of the velocity potentials in different regions have the
similar form, given by �2,24�

�m�r,z� = �Ameik·r + Bme−ik·r�Xm�z� + �
s=1

�

cm�ks�eks·rfm�z,ks� ,

�3�

where r= �x ,y�, m is the index standing for different regions,
k and ks are the wave vectors for the traveling and evanes-
cent waves, respectively, and X�z� and f�z ,ks� are the vertical
component of the traveling wave modes and the evanescent
wave modes, respectively, given by

X�z� = 2�k
cosh�k�z + h��

�sinh�2kh� + 2kh
, �4�

f�z,ks� = 2�ks
cos�ks�z + h��

�sin�2ksh� + 2ksh
. �5�

The coefficients A ,B ,C in different regions should be related
by proper matching conditions of Eqs. �2�, as done in Ref.
�2�. The dispersion relation for the traveling wave modes
follows

�2 = gk�1 +
k2T

�g
�tanh�kh� , �6�

while for the evanescent wave modes it is given by the

�2 = − gks�1 +
ks

2T

�g
�tan�ksh�, s = 1,2,3 . . . , �7�

where T is the liquid surface tension and � is the liquid
density.

A transfer matrix method which is inclusive of the eva-
nescent waves is extended to the study of liquid surface
waves propagating over uneven bottoms. This method has
been frequently used in the calculations of optical properties
of multiple thin films �25,26�. Within the framework of the
transfer matrix method, the band structures, transmission,
and reflection can be calculated. The liquid used in our cal-
culations is the same as in our previous experiments to ob-
serve superlensing, self-collimation phenomena, and band
gaps in liquid surface waves �16–18�. The reason for using
this liquid is due to the fact that we can carry out experi-
ments along the setups established �16–18�. It should be
noted that our methodology and results can be extended to
water waves in a rather straightforward way.

Figure 2 shows the calculated band structure of liquid
surface waves over a bottom with an infinite 1D periodic

undulation for the propagating direction along x. Similar to
that in solids and photonic crystals, wave propagation in pe-
riodic structures is characterized by complicated band struc-
tures. Between bands there exist a series of band gaps owing
to Bragg resonance. For waves with frequency located into a
band, propagation is allowed. On the contrary, propagation is
forbidden for waves with frequency located into a band gap.
It can be found the width of band gaps at low frequencies is
larger in general than that at high frequencies. This is due to
the fact that low frequency waves sense the undulation stron-
ger than high frequency waves.

For an arbitrary propagating direction, the structure with
an infinite 1D undulation is periodic along the x direction.
But it is homogeneous along the y direction. Thus, for an
arbitrary direction of propagation, it is better to examine the
projected band structure over the tangential component qy of
the Bloch wave vector q, shown in Fig. 3. Since along
the x direction the structure is periodic, the Bloch wave
vector component qx should be restricted to the range
−� /a�qx�� /a. The allowed mode frequencies �n�q� for
each choice of q constitute the projected band structure,
where n is the band index.

For a wave of arbitrary propagating direction over a bot-
tom, its angular frequency ��kx ,ky� is given by the disper-
sion relation of Eq. �6�, where k= �kx

2+ky
2�1/2, so in general

��0,ky����kx ,ky� since ky �k. The line ��0,ky =k� thus can
be viewed as a wave line, similar to the light line for elec-
tromagnetic waves �19� under which there are no propagative
modes. Wave lines for different liquid depth h0 are also plot-
ted in Fig. 3.

For waves incident from a region with liquid depth h0
upon a structure with a finite 1D undulation, the system is no
longer infinitely periodic along the x direction. However, qy
is still a valid symmetrical label since along the y direction

FIG. 2. �Color online�. Calculated band structure of liquid sur-
face waves over a bottom with an infinite 1D periodic undulation
for the Bloch wave vector along x. Structural parameters are
d1=d2=10 mm, h1=5 mm, and h2=1 mm. The Bloch wave vector
q is in units of � /a, where a=d1+d2 is the lattice constant of the
1D undulation.
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the system is infinitely homogeneous. Thus, the projected
band structure can still be a good reference for discussing
transmissive properties. In the following discussions, we fo-
cus on the first band gap although higher-order band gaps
can be discussed similarly. The first band gap at qy =0 ranges
from 2.56 to 3.57 Hz, defined by the upper and lower edges
of the first and second bands, respectively. It is interesting
to note that the first and second bands cross at about
qy = ±0.95 mm−1, corresponding to the internal Brewster’s
angle between two media with liquid depth of h1 and h2. The
existence of the Brewester’s angle in liquid surface waves
can be understood by the similar physical nature between
liquid surface waves and p-polarized electromagnetic waves
�27,28�. Physically, the boundary conditions satisfied for liq-
uid surface waves at the interface between two media are
rather similar to those for p-polarized electromagnetic
waves. Wave lines may cross the upper edge of the first band
at certain qy, denoted by dots in Fig. 3. If these crossing
points are above the upper edge of the first band gap at
qy =0, omnidirectional total reflection cannot exist. Thus, the
criterion for omnidirectional total reflection is that the cross-
ing points between the wave lines and the upper edge of the
first band are lower than the upper edge of the first band gap
at qy =0. This criterion is also valid for higher-order band
gaps.

Using the criterion discussed above, we can determine the
critical liquid depth h0 that enables omnidirectional total re-
flection, being 8.2 mm. For h0 smaller than this critical
depth, omnidirectional total reflection cannot occur. It can be

found from Fig. 3 that for h0=1 or 5 mm, no omnidirectional
total reflection is expected since there is no crossing or the
crossing points between the wave lines and the upper edge of
the first band are above the upper edge of the first band gap
at qy =0. For h0=15 mm, however, the crossing points are
lower than the upper edge of the first band gap at qy =0.
Consequently, within the frequency range between the cross-
ing points and the upper edge of the first band gap at qy =0,
omnidirectional total reflection is expected.

To confirm that omnidirectional total reflection does exist,
we need to calculate the transmittance spectra for a bottom
with a finite 1D periodic undulation at various angles of
incidence, shown in Fig. 4. For h0=5 mm, the total reflection
frequency range at 0° and 45° incidence overlaps. However,
at 89° incidence, waves can transmit for frequencies within
the above overlapping frequency range. Thus, there does not
exist omnidirectional total reflection. For h0=15 mm, over
the frequency range approximately from 3.16 to 3.57 Hz,
waves are totally reflected even at 89° incidence, indicating
the existence of omnidirectional total reflection. Our pro-
posal that renders omnidirectional total reflection may have
practical applications in ocean engineering. But one must
consider that there is a broad range of incoming frequencies.
This can be achieved by the proper choice of the structural
parameters or by stacking different undulatory structures to
enlarge the frequency range of omnidirectional total reflec-
tion �22�.

In summary, based on a transfer matrix method, we stud-
ied theoretically the band structures and transmissive prop-
erties of liquid surface waves propagating over a bottom with
a 1D periodic undulation. We found that omnidirectional to-
tal reflection can exist in this system if the undulatory pa-
rameters are properly chosen. A general criterion that enables

FIG. 3. �Color online� Projected band structure of the same
structure in Fig. 2 for arbitrary directions of propagation over the
tangential Bloch wave vector qy. Shaded and white regions repre-
sent bands and band gaps, respectively. Solid, dashed, and dash-
dotted lines stand for the wave lines for h0=1,5 ,15 mm, respec-
tively. Two horizontal dotted lines denote the edges of the first band
gap at qy =0. Black dots are the crossing points between wave lines
and the upper edge of the first band.

FIG. 4. �Color online� Calculated transmittance spectra of a
structure with a 1D undulation of 30 periods at various angles of
incidence. Structural parameters are the same as in Fig. 2. Solid and
dashed lines stand for h0=15 and 5 mm, respectively.
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omnidirectional total reflection was proposed. The existence
of omnidirectional total reflection for liquid surface waves
propagating over a bottom with 1D periodic undulations may
manifest potential applications.
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